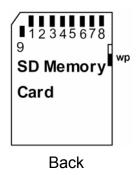
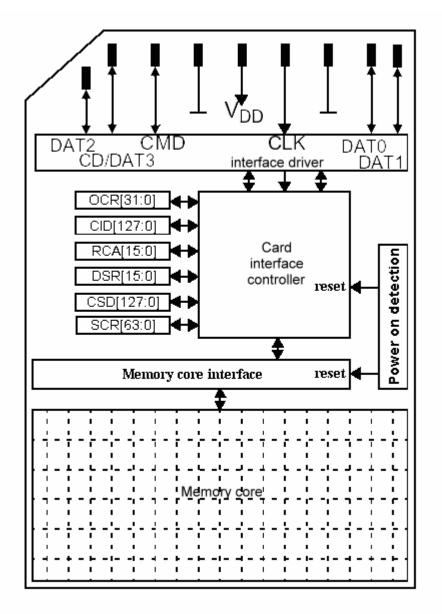
Secure Digital Card


Description

Secure Digital Card of high capacity but economic cost. It is specifically designed to meet the security, capacity and small form factor requirements in newly emerging audio and video consumer electronic devices.Transcend Secure Digital Card can lead you to a colorful digital world.

Placement

Front


Features

- ROHS compliant product
- Operating Voltage: 2.7 ~ 3.6V
- Operating Temperature: -25 ~ 85°C
- Insertion/removal durability: 10,000 cycles
- Fully compatible with SD card spec. v1.1
- Mechanical Write Protection Switch
- Forward compatibility to MultiMediaCard Version 2.11
- Supports Copy Protection for Recorded Media(CPRM) for music and other commercial media
- Form Factor: 24mm x 32mm x 2.1mm

Pin No.		SD Mode				SPI Mode
FILLINO.	No. Name Type Description		Name	Туре	Description	
1	CD/DAT	I/O/PP ³	Card Detect/Data Line [Bit3]	CS	Ι	Chip Select (neg true)
2	CMD	PP	Command/Response	DI	Ι	Data In
3	V _{SS1}	S	Supply voltage ground	VSS	S	Supply voltage ground
4	V_{DD}	S	Supply voltage	VDD	S	Supply voltage
5	CLK	Ι	Clock	SCLK	Ι	Clock
6	V_{SS2}	S	Supply voltage ground	VSS2	S	Supply voltage ground
7	DAT0	I/O/PP	Data Line [Bit0]	DO	O/PP	Data Out
8	DAT1	I/O/PP	Data Line [Bit1]	RSV		
9	DAT2	I/O/PP	Data Line [Bit2]	RSV		

Pin Definition

Architecture

Bus Operating Conditions

General

Parameter	Symbol	Min.	Max.	Unit	Remark
Peak voltage on all lines		-0.3	VDD+0.3	V	
All Inputs					
Input Leakage Current		-10	10	μA	
All Outputs					
Output Leakage Current		-10	10	μA	

Power Supply Voltage

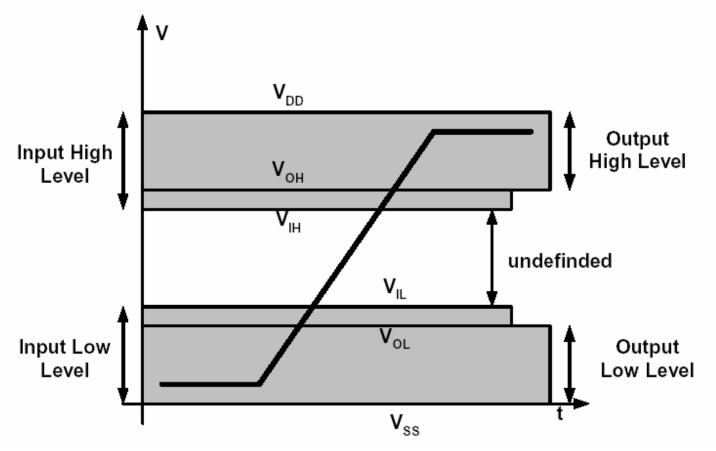
Parameter	Symbol	Min.	Max.	Unit	Remark
Supply voltage	V_{DD}	2.0	3.6	V	CMD0, 15,55,ACMD41
					commands
Supply voltage specified in OCR register		2.7	3.6	V	Except CMD0, 15,55,
					ACMD41 commands
Supply voltage differentials (V_{SS1} , V_{SS2})		-0.3	0.3	V	
Power up time			250	ms	From 0v to V _{DD} Min.

Note. The current consumption of any card during the power-up procedure must not exceed 10 mA.

Bus Signal Line Load

The total capacitance C_L the CLK line of the SD Memory Card bus is the sum of the bus master capacitance C_{HOST} , the bus capacitance C_{BUS} itself and the capacitance C_{CARD} of each card connected to this line: $C_L = C_{HOST} + C_{BUS} + N^*C_{CARD}$

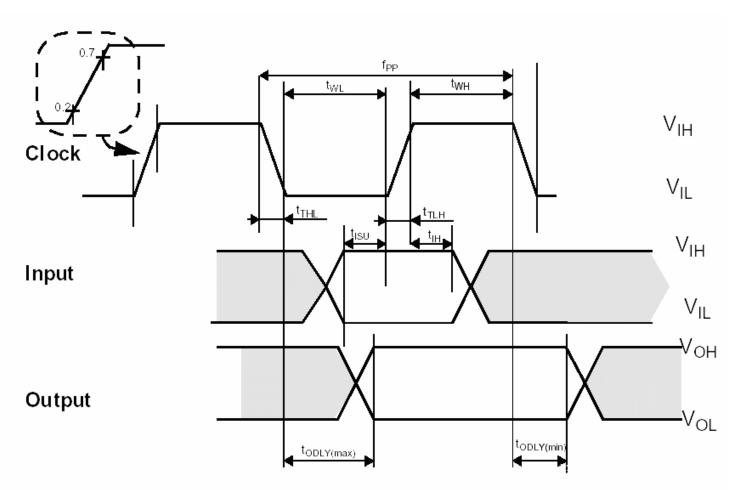
Where N is the number of connected cards. Requiring the sum of the host and bus capacitances not to exceed 30 pF for up to 10 cards, and 40 pF for up to 30 cards, the following values must not be exceeded:


Parameter	Symbol	Min.	Max.	Unit	Remark
Bus signal line capacitance	CL		100	pF	$f_{PP} \le 20 \text{ MHz}, 7 \text{ cards}$
Single card capacitance	C _{CARD}		10	pF	
Maximum signal line inductance			16	nH	f _{PP} ≤ 20 MHz
Pull-up resistance inside card (pin1)	R _{DAT3}	10	90	kΩ	May be used for card
					detection

Note that the total capacitance of CMD and DAT lines will be consist of C_{HOST} , C_{BUS} and one C_{CARD} only since they are connected separately to the SD Memory Card host.

Parameter	Symbol	Min.	Max.	Unit	Remark
Pull-up resistance	R_{CMD}, R_{DAT}	10	100	kΩ	To prevent bus floating
Bus signal line capacitance	CL		250	рF	$f_{PP} \le 5 \text{ MHz}$, 21 cards

• Bus Signal Levels


As the bus can be supplied with a variable supply voltage, all signal levels are related to the supply voltage.

To meet the requirements of the JEDEC specification JESD8-1A, the card input and output voltages shall be within the following specified ranges for any V_{DD} of the allowed voltage range:

Parameter	Symbol	Min.	Max.	Unit	Remark
Output HIGH voltage	V _{OH}	0.75* V _{DD}		V	I _{OH} = -100 μA @V _{DD} min
Output LOW voltage	V _{OL}		0.125* V _{DD}	V	I _{OL} = -100 μA @V _{DD} min
Input HIGH voltage	V _{IH}	0.625* V _{DD}	V _{DD} + 0.3	V	
Input LOW voltage	V _{IL}	V _{SS} – 0.3	0.25* V _{DD}	V	

• Bus Timing

Shaded areas are not valid

Parameter	Symbol	Min	Max.	Unit	Remark		
Clock CLK (All values are referred to min (V_{IH}) and max (V_{IL})							
Clock frequency Data Transfer Mode	f _{PP}	0	25	MHz	$C_L \leq 100 \text{ pF}$, (7 cards)		
Clock frequency Identification Mode	f _{OD}	0	400	KHz	$C_L \le 250 \text{ pF}$, (21 cards)		
(The low freq. is required for MultiMediaCard							
compatibility.)							
Clock low time	t _{WL}	10		ns	$C_L \leq 100 \text{ pF}$, (7 cards)		
		50		ns	$C_L \le 250 \text{ pF}$, (21 cards)		
Clock high time	t _{WH}	10		ns	$C_L \le 100 \text{ pF}$, (7 cards)		
		50		ns	$C_L \le 250 \text{ pF}$, (21 cards)		
Clock rise time	t _{TLH}		10	ns	$C_{L} \le 100 \text{ pF}, (7 \text{ cards})$		
			50	ns	$C_L \le 250 \text{ pF}, (21 \text{ cards})$		

Secure Digital Card

Clock fall time	t_{THL}		10	ns	$C_L \le 100 \text{ pF}$, (7 cards)		
			50	ns	$C_L \le 250 \text{ pF}$, (21 cards)		
Inputs CMD, DAT (referenced to CLK)							
Input set-up time	t _{ISU}	5		ns	$C_L \le 25 \text{ pF}, (1 \text{ cards})$		
Input hold time	t _{IH}	5		ns	$C_L \le 25 \text{ pF}, (1 \text{ cards})$		
Outputs CMD, DAT (referenced to CLK)							
Output Delay time	t _{ODLY}	0	14	ns	$C_L \le 25 \text{ pF}, (1 \text{ cards})$		

Reliability and Durability

_	
Temperature	Operation: -25°C / 85°C
	Storage: -40°C (168h) / 85°C (500h)
	Junction temperature: max. 95°C
Moisture and corrosion	Operation: 25°C / 95% rel. humidity
	Storage: 40°C / 93% rel. hum./500h
	Salt Water Spray: 3% NaCl/35C; 24h acc. MIL STD Method 1009
Durability	10.000 mating cycles; test procedure: tbd.
Bending	10N
Torque	0.15N.m or +/-2.5 deg
Drop test	1.5m free fall
UV light exposure	UV: 254nm, 15Ws/cm ² according to ISO 7816-1
Visual inspection	No warp page; no mold skin; complete form; no cavities surface smoothness <=
Shape and form	-0.1 mm/cm ² within contour; no cracks; no pollution (fat, oil dust, etc.)
Minimum moving force of WP witch	40gf (Ensures that the WP switch will not slide while it is inserted to the connector.)
WP Switch cycles	minimum 1000 Cycles(@Slide force 0.4N to 5N)

Above technical information is based on industry standard data and tested to be reliable. However, Transcend makes no warranty, either expressed or implied, as to its accuracy and assumes no liability in connection with the use of this product. Transcend reserves the right to make changes in specifications at any time without prior notice.